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1 Introduction

Problem: Multi-armed Bandits. Multi-armed Bandits (MAB) is a Machine Learning framework where
a learning agent learns to make a series of decisions to maximize its reward. The learning agent is given a
set of actions A; each arm a ∈ A is associated with a reward distribution νa with expected mean µa and
the optimal arm has expected reward µmax := maxa∈A µa. Initially, the learning agent does not know the
arms’ reward distributions V = (νa)a∈A. At each time step t, the learning agent takes an action at (also
called pulling an arm at) and receives a reward rt,at

from the arm-associated distribution νat
. The learning

agent would like to maximize its cumulative reward in a time horizon of T by interacting and collecting
information from the environment. To measure an algorithm’s performance, we use the gap between the
cumulative reward obtained by the algorithm to best the reward returned by executing the optimal arm in
each round, called Regret. An algorithm’s Pseudo-regret Regret(T ) is the expected difference by removing
the random noise brought by the reward distribution. Precisely, the Pseudo-regret of an algorithm π on the
Bandit instance B is

RegretπB(T ) =

T∑
t=1

∆at
=

T∑
t=1

µmax − µat
,

where ∆at := µmax−µa is the suboptimal gap and B := (T,A,V) represents the bandit instance specified by
T , A and V (More details in Section2). Usually, we also use Regret(T ) to replace RegretπB(T ) for short if we
have set the bandit instance and the algorithm clearly and unchanged. The time horizon T corresponds to
the total number of users exposed to the advertisement. Over a designated time T , at every moment t, the
immediate reward rt,at

is 1 if the user purchases the promoted product. Otherwise, the reward is 0. We seek
a strategy to minimize the cumulative regret. The challenge lies between exploring new arms or exploiting
the current best arm. If we explore too many arms, we will suffer a suboptimality since the suboptimal arm
has been selected considerably. If we always stick to the empirical best, we might lose a chance to identify
the real optimal arm. This framework has been used in many applications. Below, we consider an example:

Example: Online Advertising Campaign. Imagine a company promoting a product on digital plat-
forms, aiming to captivate customers as much as possible. There are plenty of website layouts. For example,
a visually stunning website might fall short if it is not user-friendly or does not provide a seamless browsing
experience. Different website layouts will change the functionality and navigability of each design. In the
context of the MAB problem, we denote each website design layout as an ‘arm’. Still, we assume that only
one design generates the highest profit by attracting the most visitors, corresponding to that there is one
optimal arm. The company wants to allocate the most effective layout design to visitors to increase the
chances of engagement with the advertised product. However, the company needs to know which design
yields the best results. The main challenge arises when balancing testing a new website design (exploration)
and sticking with the website design believed to be the most effective (exploitation). The good thing is that
the company can adjust its choice according to data from earlier interactions.
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Problem: Offline Evaluation in Multi-Armed Bandits. Suppose we want to estimate the perfor-
mance of a new policy. Directly deploying this policy online can raise concerns about losing rewards.
Instead, we have the interaction history log generated by another algorithm with the environment available.
A natural way is to use this data to evaluate the new policy. This is called offlie evaluation.

Next, we introduce more notation for the offline evaluation problem. We define history log up to time T
as the collection of history decisions and return rewards, denoted by HT := (at, rt,at

)
T
t=1. Suppose we have a

collection of history log HT within the time horizon T . Additionally, to estimate the expected performance
of all arms, we need the arm sampling probability distribution at each time step t, denoted by Pt. The
agent pulls the arm at each time step following the arm sampling probability distribution. If Pt has been
provided by the algorithm explicitly, we will use the augmented history log, which is the history log HT

added the arm sampling probability distribution Pt for all time step 0 ≤ t ≤ T , H+
T := (at, rt,at

,Pt)
T
t=1. The

augmented history log at each time step t, including the pulled arm at, the instantaneous reward rt,at
, and

the arm sampling probability vector Pt. In the k-armed bandit setting, Pt := (pt,a)
K
a=1.

Consider the example of evaluating a policy that takes actions uniformly at random. We denote its
expected performance by µ := 1

K

∑K
k=1 µk. Next, we use the Inverse Probability Weighting (IPW) esti-

mator [23] to estimate the µ. Given the augmented log data H+
T , we can construct the IPW estimator

r̂t,a := rt1{a=at}
Pt,a

and we estimate µ by the following equation

µ̂ =
1

KT

T∑
t=1

r̂t,a.

One nice property of µ̂ is that it is an unbiased estimator to µ if it is generated by a well-behaved stochastic
bandit algorithm (more precisely ∀t ≤ T , mina pt,a > 0). For those stochastic bandit algorithms whose arm
sampling probability is not accessible, such as Thompson Sampling (more details can be found in section 3.2),

if we construct the estimator like µ̂ but use an estimated arm sampling probability P̂t to replace Pt in place,
it is hard to verify if the new estimator is unbiased.

In the following report, in Section 2, we give the formal definition of the Multi-arm bandit problem and
several important regret measurements in the asymptotic and finite-time aspects. Section 3 includes typical
bandit algorithm families from the literature and compares their regret results. Section 4 shows our proposed
bandit algorithm, called Kullback-Leibler Maillard Sampling and its regret analysis. Section 5 contains two
synthetic experiments related to the Kullback-Leibler Maillard Sampling. Section 6 summarizes the strength
of Kullback-Leibler Maillard Sampling and gives some future research aims in the trajectory of our current
work. For the summary of the notations used in this report, please see Appendix A.

2 Background

In this section, we present a formal framework for the MAB problem and the notations used throughout the
report. We also define the interaction protocol and the performance measure for evaluating MAB algorithms.

• K-armed bandit instance B A finite-time K-armed bandit instance B includes three important com-
ponents, B = (T,A,V). T represents the length of the time horizon. A is the arm set A = {1, 2, . . . ,K},
with each number representing a different arm. V = (νa)

K
a=1 is the set of reward distributions νa, where

νa is associated with the arm a ∈ A and is from a probability distribution family F .

There are many choices of F , such as bounded distribution family over [0, 1], F[0,1], Bernoulli distri-
bution family, FBern and One-parameter exponential distribution (OPED) family, FOPED,η,b. More
formally, [0, 1]-bounded distribution family is defined as:

F[0,1] :=

{
ν :

∫ 1

0

Pν(dx) = 1

}
.
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For example, the reward distribution support set in [5] is bounded on [0, 1]. Our KL-MS also works in
the [0, 1]-bounded reward setting, and reward distribution all come from F[0,1].

Another particular case is the reward is 0, 1, like the Click-Through on an advertisement, click or no
click represents 1 and 0, so the reward distribution is a Bernoulli distribution. The (0, 1)-Bernoulli
distribution family, which is defined as:

FBern := {ν : supp(ν) = {0, 1} ,Pν(x = 1) = µ, µ ∈ [0, 1]} .

One case is that the reward distribution has a light tail compared to the Gaussian distribution with
variation σ2, called σ2-sub-Gaussian distribution family, Fσ2−sub−G.

1 Therefore, the distribution
family set is

Fσ2−sub−G :=
{
νσ : ν is σ2-subgaussian

}
.

If we want to take a broader view of the reward distribution to cover Bernoulli, Bounded, Possion and
Gaussian distribution, the One-parameter exponential distribution (OPED) family will be the ideal
distribution family to analyze. Formally, OPED family with some measure η and function b : Θ → R
is defined as:

FOPED,η,b :=

{
νθµ :

dνθµ
dη

(x) = exp (xθµ − b(θµ))

}
,

where θµ is the canonical parameter that maps mean parameter µ in R. Many common distributions
can be categorized in OPED with specific choices of canonical parameter θµ, the cumulant generating
function b(θµ), and the normalization q(x). For instance, a Poisson distribution with pdf pµ(x) :=
µxe−µ

xk! is a OPED by setting θµ = ln (µ), b(θµ) = eθ + ln(k!). And a Bernoulli ditribtion with pdf

pµ(x) := µx (1− µ)
1−x

is a OPED by setting θµ = ln
(

µ
1−µ

)
, b(θµ) = ln

(
eθ + 1

)
.

• Interaction Protocol

Under the finite time horizon setting, the learning agent interacts with the instance B within a total of
T time steps. An interaction protocol of the learning agent is presented in the Protocol 1. The agent’s
action at the time step t can only depend on the history up to time step t−1, i.e. Ht−1 = (ai, ri,ai)

t−1
i=1.

rt,at
is the instantaneous reward returned from the t-th step after pulling arm at. Given a time horizon

T , the agent gets the cumulative reward Reward(T ) =
∑T

t=1 rt,at
.

Protocol 1 Multi-armed Bandit Interaction Protocol
1: Input: K ≥ 2
2: for t = 1, 2, · · · , T do
3: Pull an arm at ∈ A
4: Observe reward rt,at ∼ νat .
5: end for

The following notation has been used throughout the rest of this report: Based on Ht, the number of
arm a until time step t is denoted by Nt,a :=

∑T
s=1 1 {as = a}. The empirical reward for arm a after

time step t is denoted as µ̂t,a :=
∑t

s=1 rs,as1{as=a}
Nt,a

. The suboptimality gap of an arm a is defined as

∆a := µmax−µa. The empirical estimation of ∆a is ∆̂t,a := µ̂t,max− µ̂t,a, where µ̂t,max is the empirical
best mean reward which is set to maxa∈A µ̂t,a.

We define the Kullback-Leibler divergence between two distributions ν and ρ as KL (ν, ρ) = EX∼ν

[
ln dν

dρ (X)
]
.

Also when the reward distributions are Bernoulli, we define kl (µ, µ′) := µ ln µ
µ′ +(1−µ) ln 1−µ

1−µ′ which is

1sub-Gaussian property: we call a random variable X is σ-sub-Gaussian if and only if P (|X − E[X]| ≥ λ) ≤
2exp

(
−λ2/σ2

)
, ∀λ ≥ 0. Sub-gaussian distribution is a probability distribution with a tail decay lighter than the normal

distribution. Intuitively, the tail of a sub-Gaussian distribution is dominated by a Gaussian distribution’s tail.
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the binary Kullback-Leibler divergence between two Bernoulli distributions with expected mean µ, µ′

in [0, 1], respectively. Finally, We define the variance of a Bernoulli distribution ν with mean µ as
µ̇ = µ(1− µ).

• Performance measures

Besides regret, we have more fine-grained methods to measure the performance in the literature in an
instance-independent or instance-dependent manner in an asymptotic or finite-time regime.

1. Asymptotic optimality Asymptotic optimality refers to the desirable property of a bandit
algorithm becoming increasingly effective as the number of time steps approaches infinity. An asymp-
totically optimal algorithm is one that, over a long enough time horizon, approaches the best possible
performance in terms of cumulative rewards or regret minimization. [28] and [13] proved that for any
consistent algorithm, the lower bound exists. A bandit algorithm is consistent in an environment family
E = {B : B = (T,A,V) ,∀a ∈ A, νa ∈ F} if the regret is sub-polynomial 2 for any bandit instances in
that environment. Therefore, a lower bound of the asymptotic regret is shown in the Theorem 1.

Theorem 1 ([28, 13]). For any bandit instance B, in an environment family E, given a consistent
bandit algorithm over E, the regret of such algorithm satisfies

lim inf
T→∞

RegretπB(T )

ln(T )
≥

∑
a:∆a>0

∆a

KF
inf(νa, µmax)

. (1)

KF
inf(νa, µmax) := infG∈F {KL (νa, G) : EG (X) > µmax}[11] denotes the minimum Kullback-Leibler di-

vergence between two distributions, νa, which is the reward distribution associated with a suboptimal
arm a and G, which is an arbitrary reward distribution from G whose expectation is greater than
µmax. For example, an algorithm is asymptotically optimal in the Bernoulli reward setting if for any
Bernoulli bandit instance (B = (T,A,V), ∀a ∈ A, νa is a Bernoulli distribution).

lim sup
T→∞

Regret(T )

ln(T )
=

∑
a:∆a>0

∆a

kl (µa, µmax)
, (2)

Recall that µa is the expectation of the Bernoulli distribution νa.

Remark 2. When we discuss the asymptotic optimality, we need to clarify which reward distribution
family we are considering. When focusing on the Bernoulli bandit scenario, the expected regret should
satisfy the Eq. (2) if the algorithm is asymptotic optimality. If the reward distribution is in the σ2-sub-
Gaussian distribution family, Fσ2−sub-G, the asymptotic lower bound becomes Eq. (3)

lim inf
T→∞

Regret(T )

ln(T )
≥

∑
a:∆a>0

2σ2

∆a
, (3)

For any distribution that is supported on [0, 1], since it is also a 1
4 -sub-Gaussian distribution, we

can regard the [0, 1]-Bounded distribution or Bernoulli distribution as a subset of the sub-Gaussian
distribution. However, the regret bound involving KF

inf (like Eq. (1))) provides a superior regret than
the Eq. (3), which does not have the KF

inf in the [0, 1]-Bounded or the OPED reward setting. Considering
the Pinsker’s inequality, which establishes that kl (µa, µmax) ≥ 2∆2

a, we can always show that∑
a:∆a>0

∆a

kl (µa, µmax)
≤

∑
a:∆a>0

1

2∆a
. (4)

2Sub-polynomial: A bandit algorithm π is sub-polynomial over a class of bandit environment E if for any instance B ∈ E
and p > 0, it holds that limn→∞

RegretπB
np = 0.
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Eq. (4) shows that the bound without KL type is never more favorable than the KL type regret bound,
even when the regret distribution is not Bernoulli, but the Bounded reward setting, such as F[0,1], such
superiority still exists because of the Eq. (4).

2. Minimax ratio In real-world scenarios, we often deal with finite time horizons and practical
constraints. Therefore, the asymptotic perspective might not entirely reflect an algorithm’s perfor-
mance in these practical settings, which typically involve limited interactions. To evaluate a bandit
algorithm’s performance in the finite regime, we use the ratio between the worst-case regret bound
and the minimax optimal regret, called the minimax ratio. Suppose the algorithm’s worst regret is not
significantly worse than the minimax optimal regret lower bound or the minimax ratio is not large. In
that case, we can infer that the algorithm performs satisfactorily.

For any K-armed bandit instance B with bounded reward setting, [7] shows that the upper bound

of the worst-case regret bound is O
(√

KT
)
, and [10] shows that lower bound is O

(√
KT

)
. Thus,

the minimax optimal regret is Θ
(√

KT
)
. Given a K-armed bandit problem with time horizon T , an

algorithm has a minimax ratio of f(T,K) if it has a worst-case regret bound of O
(√

KTf(T,K)
)
.

By minimizing the minimax ratio, an algorithm ensures that its performance remains competitive even
in the presence of a worst-case reward distribution. This ratio captures the algorithm’s robustness and
adaptability across various bandit instances.

Remark 3. The minimax ratio quantifies the performance of a bandit algorithm in a finite time horizon
T , while the asymptotic optimality characterizes the order of Regret(T ) of an algorithm as T → ∞.

3. The Sub-UCB criterion [29] shows that even if an algorithm satisfies the optimal minimax ratio
and asymptotic optimality, it can still suffer a high regret in a finite time, especially compared with the
widely popular Upper Confidence Bound (UCB) algorithm ([7, 14, 34, 8], see section 3.3 for details).
This observation introduces another criterion that provides another fine-grained characterization of a
bandit algorithm’s regret guarantees: the sub-UCB criterion. The notion of the Sub-UCB criterion
is initially defined in the context of sub-Gaussian bandits [30]: Given a bandit problem with K arms
whose reward distributions are all σ2-sub-Gaussian. An algorithm is said to satisfy the sub-UCB
criterion if, for all σ2-sub-Gaussian bandit instances, the following inequality is true

Regret(T ) ≲
∑

a:∆a>0

∆a +
∑

a:∆a>0

σ2

∆a
lnT. (sub-Gaussian case)

A ≲ B represents that there is a constant C ∈ R+, A ≤ C ·B. Specialized to the [0, 1]-Bounded reward
setting, as any distribution supported on [0, 1] is also 1

4 -sub-Gaussian, and all suboptimal arm gaps
∆a ∈ (0, 1] are such that ∆a < 1

∆a
, we can simplify the sub-UCB criterion to: there exists some positive

constant C, such that for all [0, 1]-Bounded reward bandit instances, Regret(T ) ≲
∑

a:∆a>0
lnT
∆a

.

4. Closed-form sampling probability distribution Closed-form sampling probability distribu-
tion has a nice property in the offline evaluation phase. We need to access the arm sampling probability
distribution if we want to utilize the IPW estimator for offline evaluation. A bandit algorithm has a
closed-form arm sampling probability distribution, which means that we can record the arm sampling
probability distribution when executing the algorithm without introducing further steps to compute
or approximate it.

In this report, we propose a new multi-armed bandit algorithm called Kullback-Leibler Maillard Sampling,
abbreviated as KL-MS, in the [0, 1]-Bounded reward setting. The proof details can be found in our recent
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work ‘Kullback-Leibler Maillard Sampling for Multi-armed Bandits with Bounded Rewards, Hao Qin, Kwang-
Sung Jun, Chicheng Zhang, NeurIPS 2023 ’[37]. KL-MS aims to achieve an adaptive worst-case regret in the
MAB setting which has been reported in the literature. KL-MS is also a bandit algorithm with close-form
arm sampling probability distribution, which enables the possibility of solving the efficient offline evaluation
problem by combining it with the IPW estimator.

3 Prior Solutions

We list several categories of bandit algorithms in this section, but not all algorithms work in the [0, 1]-
Bounded reward setting; some set the reward distribution as sub-Gaussian or the general OPED. The
Bernoulli distribution is a special case of OPED, and the [0, 1]-Bounded reward setting is a special case
of sub-Gaussian distribution. Although we are only interested in the [0, 1]-Bounded reward setting, we
still include the algorithm working for the sub-Gaussian distribution but fit them into the particular [0, 1]-
Bounded reward setting since [0, 1]-Bounded distribution is 1

4 -sub-Gaussian. Also, for the distribution of
rewards in the context of the OPED family, we are applying the regret result directly to the [0, 1]-Bernoulli
scenario regardless of its original setting. Furthermore, it is a known fact that bandit problems with rewards
limited to the range [0, 1] can be transformed into Bernoulli bandit problems through a straightforward
conversion method called Binarization trick. This involves observing a reward rt,at from the range [0, 1]
at each time step t, then simulating a Bernoulli trial r̃t,at based on rt,at , and using this result in a Bernoulli
bandit algorithm. However, this method fails to achieve asymptotic optimality in the context of [0, 1]-
Bounded reward setting (see Remark 2).

Generally speaking, two families of provably efficient algorithms are proposed in the literature for solving
the MAB problem: deterministic and stochastic algorithms. In deterministic algorithms, the action taken
at each time step t is deterministic, given the interaction history before that time. In stochastic algorithms,
the decision-making follows an arm sampling distribution that depends on the interaction history.

Typical algorithms such as the Explore-Then-Commit (ETC) (section 3.1) and UCB-like algorithm (sec-
tion 3.3) can be categorized as deterministic exploration algorithms. The stochastic algorithms include
Thompson Sampling (section 3.2) and Boltzmann Exploration (section 3.4).

3.1 Explicit Explore and Exploitation Algorithms

3.1.1 ETC

One type of algorithm assigns some steps to explore by pulling all arms and acting greedily by selecting the
arm having the best empirical reward in other steps. That algorithm is easy to implement in practice and
can give a relatively good performance guarantee. A typical algorithm is the explore-then-commit algorithm
(ETC). See Algorithm 1 for the exact definition of ETC. It consists of two main stages: exploration and
exploitation.

Algorithm 1 Explore-then-commit

1: Input: K ≥ 2, {αi, βi}i∈A, m
2: for t = 1, 2, · · · , T do
3: if t ≤ mk then
4: Pull the arm at = (t mod k) + 1.
5: else
6: Pull the arm at = argmax1≤a≤a µ̂mk,a.
7: end if
8: Observe reward rt,at ∼ νat .
9: Update µ̂t,at .

10: end for
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• During the exploration phase, the algorithm allocates several trials to each arm to gather information
about their potential rewards, with the goal of identifying which arm might yield the highest expected
reward. By dedicating an initial portion of the interactions to exploration, the algorithm ensures that
it has enough data to make informed decisions during the commit phase.

• During the exploitation phase, the algorithm selects the arm with the highest mean reward. The
algorithm then ‘commits’ to exploiting the arm for the remainder of the interactions.

By tuning the length of the exploration phase mK, we can balance exploration and exploitation: If m is
high, the policy spends excessive time exploring. Conversely, when m is low, the likelihood of the algorithm
selecting a suboptimal arm in the exploitation phase increases. On the other hand, if the exploration phase is
shorter, the arm with the highest estimated reward during the exploration phase is less likely to be the best
arm, and the algorithm might suffer from suboptimal performance during the commit phase. The challenge
lies in determining the optimal value for m.

In the [0, 1]-Bounded reward setting, we give a regret bound and a minimax ratio of ETC in Theorem 4
and Theorem 5, respectively.

Theorem 4 (ETC). [30, Ch 6] Given K arms in the [0, 1]-Bounded reward setting F[0,1] and a finite time
horizon T , With the appropriate choice of m, the regret of the ETC algorithm is upper-bounded by:

Regret(T ) ≤
∑

a:∆a>0

∆a ln(T )

mini∈K ∆2
i

+
∑

a:∆a>0

∆a. (5)

A worst-case regret bound of ETC is summarized in Theorem 5.

Theorem 5 ([38], ETC). Given K arms in the [0, 1]-Bounded reward setting F[0,1] and a finite time horizon
T , the expected regret of the ETC algorithm is upper bounded as

Regret(T ) ≲ T 2/3 (K ln(T ))
1/3

In general, T is much larger than K. Therefore, Theorem 5 indicates that the ETC algorithm suffers a

high order regret at any time since the minimax optimal for the reward distribution in F[0,1] is O
(√

TK
)
.

Also, from Theorem 4 we cannot conclude whether the ETC satisfies the asymptotical optimality in the
Bouned reward setting.

3.1.2 Pros and Cons

Explicit exploration and exploitation algorithms are straightforward to implement. It separates the explo-
ration and exploitation phases into distinct steps, which are easy to understand and analyze. The exploration
cost (in terms of suboptimal pulls) is known and fixed upfront, which can be advantageous in settings where
a predictable number of exploratory trials is needed. When the differences in expected rewards between arms
are large (large gap scenarios), ETC can quickly identify the best arm and perform well with less complex
tuning compared to other algorithms.

However, the optimal setting of the exploration phase in ETC often depends on knowing the time horizon
T , which may not be practical or possible in all applications. The performance of ETC is incomparable to
other algorithms, such as Thompson Sampling (section 3.2) and UCB (section 3.3). Also, ETC does not
have a closed-form arm sampling probability distribution at any time.

Next, we will introduce more algorithms that implicitly trade off explore/exploit steps.

3.2 Thompson Sampling

Thompson Sampling (TS) (see Algorithm 2 for the exact definition) uses a stochastic approach to balance
exploring different arms with exploiting the arms that perform well. The key idea behind TS is to maintain
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a general posterior distribution P of the expected reward of each arm and update the general posterior
distribution based on the historical feedback accordingly. This general posterior distribution represents the
algorithm’s uncertainty about the expected reward of each arm.

When TS needs to select an arm, TS samples a value from the general posterior distributions Pt,a

associated with each arm at time step t. Then, TS will select the arm that has the highest sampled value.
Notably, the design of the general posterior probability should make arms with higher expected rewards
more likely to be selected. However, there is still a need for suboptimal arms to be explored, achieving the
balance between exploiting what is known to be the best and exploring new possibilities.

In TS, one typical way to maintain general posterior distribution for each arm is using a posterior
distribution with conjugation pair (prior-posterior or proxy posterior)[4, 5, 27]. The prior distribution
captures the agent’s initial beliefs or assumptions about the expected reward of each arm. After observing
the returned reward, TS updates the general posterior distribution to incorporate the new reward.

Algorithm 2 Generic Thompson Sampling

1: Input: T , arm set [K], {Pa}Ka=1

2: for t = 1, 2, · · · , T do
3: for a = 1, 2, . . . ,K do
4: Sample θ̂a from the general posterior distribution Pt−1,a associated with the arm a.
5: end for
6: Pull the arm at := argmax1≤a≤K θ̂a.
7: Observe reward rt,at

∼ νat
.

8: Update µ̂t,at
and {Nt,a}Ka=1.

9: Update general posterior distribution {Pt,a}Ka=1.
10: end for

3.2.1 Thompson Sampling using Beta priors (BernoulliTS)

Assuming that the reward distributions of all arms are Bernoulli, if we want to adapt the generic Thomp-
son Sampling to the Bernoulli reward distribution on {0, 1}, we can utilize Bernoulli-Beta conjugation by
initializing the general posterior distribution P0,k to be Beta(αk, βk) and update Pt,k, 1 ≤ t ≤ T follow-
ing the rule of updating the posterior distribution. More specifically, once BernoulliTS pulls an arm at
and receive a reward rt,at

, it updates posterior distribution by updating the parameter pair (αat
, βat

) =(
αat−1 + rt,at , βat−1 + 1− rt,at

)
. The regret guarantee has been analyzed in [5] and summarized as Theo-

rem 6.

Theorem 6 ([27], BernoulliTS). Given K arms in the reward setting FBern and a finite time horizon T , for
∀ε ∈ (0, 1), the number of the expected regret E [Regret(T )] of the BernoulliTS algorithm is upper bounded
by:

E [Regret(T )] ≤ 1 + ε

1− ε

( ∑
a:∆a>0

∆a ln(T )

kl (µa, µmax)

)
+ C, (6)

where C is a constant that only relates to the Bandit instance B and ε.

Theorem 6 indicates that BernoulliTS satisfies the sub-UCB criterion because we can apply the Pinsker’s
inequality that lower bounds kl (µa, µmax) by 2∆2

a. Also, [4, 5] show that BernoulliTS satisfies the asymptotic
optimality and has minimax ratio

√
ln(T ).

Theorem 7 ([4, 5], BernoulliTS). Given K arms in the reward setting FBern, BernoulliTS satisfies the
asymptotical optimality

lim
T→∞

E [Regret(T )]

ln(T )
≤

∑
a:∆a>0

∆a

kl (µa, µmax)
, (7)
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and has minimax ratio
√
ln(T ), which satisfies the following equation

E [Regret(T )] ≲
√
KT ln(T ). (8)

Also, it is worth mentioning that when the reward distribution is in F[0,1], TS with Gaussian prior[5] can
achieve a lower order minimax ratio.

E [Regret(T )] ≲
√

KT ln(K). (9)

Generally, the general posterior probability does not have to be the posterior distribution to make TS
perform well. As pointed out by [1], once the general posterior distribution satisfies suitable properties of
concentration or anti-concentration, we can guarantee the regret to satisfy asymptotical optimality and have
a minimax ratio

√
K.

3.2.2 ExpTS

A most recent work aligned in this way is the ExpTS[24]. It works under the following assumptions of
the reward distributions: Given a function V : Θ → R, an OPED family FOPED,η,b,V := FOPED,η,b ∩
{νθ : variance of νθ is V (θ) and less than Vmax}. Here, we restrict the OPED family to the Bernoulli distri-
bution family FBern and let Vmax to be 1

4 . Therefore, exact PDF of the general posterior distribution pt,a of
ExpTS has been defined to be ∀t ∈ N+, 1 ≤ a ≤ K,

Pt,a(x) :=
(Nt−1,a − 1) |x− µ̂t−1,a|

2V (x)
exp (−(Nt−1,a − 1)kl (µ̂t−1,a, x)) .

Theorem 8 ([24], ExpTS). Given K arms in the reward setting FBern and a finite time horizon T , the
regret of the ExpTS algorithm is upper bounded by:

E [Regret(T )] ≲
∑

a:∆a>λ

ln
(
T∆2

a

)
∆a

+
∑

a:∆a≤λ

∆a

√
T ,

where λ ≥ 8
√

1
T .

In Theorem 8, by letting λ = 8
√

1
T we can find the regret of ExpTS satisfies the sub-UCB criterion in

FBern. Also, ExpTS has been proven to satisfy the following regret metrics

Theorem 9 ([24], ExpTS). Given K arms in the reward setting FBern and a finite time horizon T , the
ExpTS satisfies the asymptotic optimality

lim
T→∞

E [Regret(T )]

ln(T )
=

∑
a:∆a>0

∆a

kl (µa, µmax)
. (10)

And its regret has the minimax ratio
√
ln(K).

E [Regret(T )] ≲
√

KT ln(K). (11)

The Theorem 8 and Theorem 9 also hold in the general OPED family. Details can be found in the
paper [24].
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3.2.3 ExpTS+

ExpTS+ adds a greedy step that selects the arm that has the best empirical average reward with probability
1− 1

K or selects the arm that has the best ExpTS sample with probability 1
K . More specifically, we denote

the general posterior probability of ExpTS at time step t as pExpTS
t,a , the sampling step of ExpTS+ becomes:{

Samplg θ̂a from Pt−1,a and select the arm has the best sample, with probability 1
K ,

Select arm at := argmaxa∈[K] µ̂t−1,a, with probability 1− 1
K

With the additional greedy step, ExpTS has been proven to satisfy the following regret metrics

Theorem 10 ([24], ExpTS+). Given K arms in the reward setting FBern and a finite time horizon T , the
ExpTS+ satisfies the asymptotic optimality by satisfying the equation

lim
T→∞

E [Regret(T )]

ln(T )
=

∑
a:∆a>0

∆a

kl (µa, µmax)
. (12)

The minimax ratio of ExpTS+ is 1 and its regret satisfies the following inequality

E [Regret(T )] ≲
√
KT. (13)

ExpTS achieves asymptotic optimality and the sub-UCB criterion, but the minimax ratio is
√
lnK.

Constract to ExpTS, ExpTS+ allocates more probability of picking the empirical best, thus acting more
greedily than ExpTS. ExpTS+ can close the gap in the minimax ratio by removing the logarithmic term and
achieves

√
KT regret upper bound. However, ExpTS+ does not satisfy the sub-UCB criterion.

3.2.4 Pros and Cons

Compared to other types of algorithms, TS-type algorithms have a good performance in many experiments[17,
16, 35]. The algorithm can be computationally simpler and faster, especially when the priors and likelihoods
are conjugate pairs, making the posterior updates trivial. TS has theoretical solid guarantees under certain
conditions, such as asymptotic optimality and small minimax ratio.

However, updating the general posterior distribution P can be computationally intensive for the distri-
bution that do not have conjugate priors, requiring numerical methods or approximations. Also, [21] points
out that in the Gaussian reward distribution with unknown mean and variance parameters, it is risky to
choose prior, and the wrong choice could result in suboptimal performance.

Also, TS does not generally have a closed-form arm sampling probability distribution, and we need
to use a simulation method to approximate the distribution of arm sampling probability to construct the
IPW estimator in the offline evaluation. For example, using the Monte Carlo method to do sampling to
estimate the arm sampling distribution Pt. The computation complexity is higher than O (K)[6]. Hence,
the approximation method is less efficient than closed-form arm sampling probability distribution methods.

3.3 Upper Confidence Bound Algorithm

The Upper Confidence Bound (UCB) algorithm (algorithm 3 follows the ideal of the optimism principle to
solve the classic exploration-exploitation dilemma. UCB algorithm takes the arm that maximizes a surrogate
function called UCB for the reward in each round. The construction of UCB for each arm is based on the
empirical mean reward and a measure of uncertainty for that arm, which typically has a form like Eq (14)

Ua(t) := µ̂t−1,a +Bt,a. (14)

Usually Bt,a is set as a decreasing function of Nt−1,a. The key here is that the uncertainty about the reward
of each arm influences Bt,a. The basic idea is that if an arm has a high empirical reward µ̂t,a reflected
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from the history log or is under-explored, making Bt,a large, it will have a large UCB and thus is highly
likely to be selected. The optimism principle comes into play when selecting which arm to pull next. The
UCB algorithm always chooses the arm with the highest UCB Ua(t). This optimistic approach assumes that
the actual reward is close to the best-case scenario for each arm. As the algorithm progresses, it naturally
balances exploration and exploitation. Arms that yield high rewards will gradually tighten their confidence
intervals, reducing their upper bounds. Conversely, arms that have not been explored as much will continue
to have higher UCB, encouraging exploration. Over time, the UCB algorithm’s optimism in the face of
uncertainty leads to both sufficient exploration of all actions and exploitation of the best actions. This
results in the convergence towards the optimal action as the one with the highest expected reward becomes
clearer.

Algorithm 3 Generic UCB algorithm

1: Input: arm set [K]
2: for t = 1, 2, · · · , T do
3: if t ≤ K then
4: Pull the arm at = t and observe reward rt,at

∼ νat
.

5: else
6: Pull the arm at := argmax1≤k≤K Uk (t).
7: Observe reward rt,at

∼ νat
.

8: end if
9: Update confidence bound Uat (t).

10: end for

For the [0, 1]-Bounded reward setting, there are many algorithms in the literature, such as UCB1[3, 9],
MOSS[7], kl-UCB[14], kl-UCB++[34], UCB-V[8].

3.3.1 UCB1

[9] analyzes UCB1 over the [0, 1]-Bounded reward setting F[0,1] in the K-arm bandit problem. UCB for each
arm a has been defined as

Ua(t) = µ̂t−1,a +

√
2 ln(T )

Nt−1,a
(15)

The construction of UCB in UCB1 can be written as

UCB1: Ua(t) = max

{
µ ∈ [0, 1], (µ− µ̂t−1,a)

2 ≤ 2 ln(T )

Nt−1,a

}
(16)

Based on Eq. (15) and Eq. (16), we construct the confidence bound based on the Euclidean distance
between the empirical reward µ̂t,a for arm a at time t and the possible true mean µ. The first term in Eq. (15)
is the empirical mean estimator. The second component, corresponding to the element of ‘optimism’ in the
face of uncertainty, is designed to shrink as the number of times arms a is played, denoted asNt−1,a, increases.
This implies that as we gather more data about the performance of arm a, our estimate of its true mean
reward becomes more precise, allowing the confidence bound to tighten. This part of the equation treats
arms chosen less frequently as potentially more advantageous, based on the idea that less information about
them implies greater uncertainty and, therefore, the possibility that they might yield better rewards than
more frequently chosen arms. This approach encourages exploring lesser-known arms in the decision-making
process.

A regret upper bound of UCB1 is presented in Theorem 11:
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Theorem 11 ([9], UCB1). Given K arms in the reward setting F[0,1] and a finite time horizon T , the regret
of the UCB1 algorithm is upper bounded by:

E [Regret(T )] ≤ 8
∑

a:∆a>0

ln(T )

∆a
+

∑
a:∆a>0

∆a (17)

Although UCB1 can give us a logarithmic regret w.r.t. T , the result shown in Theorem 11 is still not
tight enough to guarantee asymptotic optimality. (See Remark 2 for more detailed discussion) The minimax
ratio of UCB1 can be derived from Theorem 11, which is

√
ln(T ).

Theorem 12 (UCB1). Given K arms in the reward setting F[0,1] and a finite time horizon T , the regret of

UCB1 has minimax ratio
√
ln(T ):

E [Regret(T )] ≲
√

KT ln(T ) (18)

UCB1 has a loss bound in terms of Eq. (17) and the minimax ratio (18). We can find that Ua(t) of all
arms increases when time progresses, regardless of whether it has been pulled, resulting in favorable to the
exploration instead of exploitation.

3.3.2 MOSS

[7] proposes a bandit algorithm called Minimax Optimal Strategy in the Stochastic case (MOSS), for the
[0, 1]-Bounded reward distribution F[0,1] and the UCB is defined as

Ua(t) = µ̂t−1,a +

√
1

Nt−1,a
log+

(
T

KNt−1,a

)
. (19)

Also, the construction of the confidence bound of MOSS can be written as

MOSS: Ua(t) = max

{
µ ∈ [0, 1], (µ− µ̂t−1,a)

2 ≤ 1

Nt−1,a
log+

(
T

KNt−1,a

)}
. (20)

The number of arms pulled w.r.t. the suboptimal arm a of MOSS is guaranteed by the following theorem

Theorem 13 ([7], MOSS). Given K arms in the reward setting F[0,1] and a finite time horizon T , the regret
of the MOSS algorithm is upper bounded by:

E [Regret(T )] ≲
∑

a:∆a>0

K log
(
T∆2

a/K
)

∆a
. (21)

And the minimax ratio of MOSS is 1:

E [Regret(T )] ≲
√
KT.

When the suboptimal gap ∆a is large, the regret contributed by that arm will be much smaller than the
UCB1. Thus, MOSS can achieve a lower minimax ratio. Although MOSS closes the gap between the upper
bound and lower bound in terms of any time regret, it still does not satisfy the asymptotic optimality nor
the sub-UCB criterion due to the additional K in the Eq. (21) before the logarithm factor.

The term 1
Nt−1,a

log+

(
T

KNt−1,a

)
serves as a variance term that accounts for the uncertainty due to limited

observations. The log+ function ensures that this term is non-negative, taking into account the logarithmic
growth of our confidence with respect to the total number of trials T , divided by the number of arms K and
the number of times arm a has been played. Compare Eq. (15) and Eq. (19), we can find that the UCB of
MOSS shrinks faster than UCB when the arm has been pulled. If the performance of an arm is not good,
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that arm will be less explored in MOSS than UCB1; thus, MOSS is more favorable to exploitation rather
than exploration.

However, the use of the squared Euclidean distance (µ− µ̂t,a)
2
in UCB1 and MOSS makes the asymptotic

regret bound to be bounded byO
(∑K

a=1,∆a<0
ln(T )
∆a

)
, which is not exactly equal toO

(∑K
a=1,∆a<0

∆a ln(T )
kl(µa,µmax)

)
while the latter one can guarantee the asymptotic optimality in the Bernoulli reward setting, FBern. Such
difference reflects that we assume that the reward distributions are 1

4 -sub-Gaussian implicitly, which is a
necessary condition to be a bounded distribution over [0, 1] but not sufficient. More discussion can be found
in Remark 2.

To remedy this issue, another approach is to give the KL-divergence type confidence bound to measure
the difference between two reward distributions to replace the Euclid distance.

3.3.3 kl-UCB

kl-UCB[14] uses KL-divergence to measure the difference between the confidence bound and the empirical
estimation, and the UCB is defined as

Ua(t) = max

{
µ ∈ [0, 1], kl (µ̂t−1,a, µ) ≤

f(t)

Nt−1,a

}
,

where f(t) = log
(
1 + t log2(t)

)
. The asymptotic optimality of kl-UCB and the minimax ratio has been

summarized in Theorem 14

Theorem 14 ([14], kl-UCB). Given K arms in the reward setting FBern and a finite time horizon T , the
kl-UCB satisfies the asymptotic optimality, which means the regret has the following equation

lim
T→∞

E [Regret(T )]

ln(T )
=

∑
a:∆a>0

∆a ln(T )

kl (µa, µmax)
. (22)

Also, minimax ratio of kl-UCB is
√
ln(T )

E [Regret(T )] ≲
√
KT ln(T ). (23)

3.3.4 kl-UCB++

[34] proposes another algorithm called kl-UCB++ which works in the one-parameter exponential family
FOPED,η,b, but we still only focus on the Bernoulli case. In kl-UCB++, suppose the support set of reward
distribution is I. The UCB is defined as

Ua(t) = max

{
µ ∈ I : kl (µ̂t−1,a,,µ) ≤

f(Nt−1,a)

Nt−1,a

}
,

where f(t) = log+
(

T
Kt

(
log2+

(
T
Kt

)
+ 1
))

and log+(x) := max {log(x), 0}.
Since we focus on the special case of Bernoulli, we give the asymptotic optimality of kl-UCB++ and the

minimax ratio, which are summarized in the following theorems.

Theorem 15 ([34], kl-UCB++). Given K arms in the reward setting FBern and a finite time horizon T ,
the kl-UCB++ satisfies the asymptotic optimality. Equivalently,

lim
T→∞

E [Regret(T )]

ln(T )
=

∑
a:∆a>0

∆a ln(T )

kl (µa, µmax)
. (24)

Also, its minimax ration is 1:

E [Regret(T )] ≲
√
KT (25)
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kl-UCB and kl-UCB++ satisfy the asymptotic optimality for Bernoulli reward setting because of the
KL-type regret bound in constructing UCB. The distinct difference is that we can regard kl-UCB++ as
using an upper bound assigning higher confidence on the observed best arm than kl-UCB. The UCB of arms
in kl-UCB++ will not change until being pulled, but in kl-UCB, the UCB of arms not pulled will inflate
with the time step increasing. From Theorem 14 and Theorem 15, we can find that kl-UCB++ achieves a
lower worst regret guarantee than kl-UCB.

The minimax ratio of kl-UCB is
√
ln(T ). With the refined design of UCB, kl-UCB++ closes the gap in

the worst-case regret bound by making the minimax ratio 1.

3.3.5 UCB-V

UCB-V[8] assumes the [0, 1]-Bounded reward setting. It is noticeable that UCB-V is a type of ‘variance-
aware’ algorithm since the confidence bound is sensitive to the variance estimation w.r.t. that arm. In
[9], the empirical performance of algorithms using estimated variance outperforms those not estimating
variance. Therefore, UCB-V proposes utilizing a variance estimator in constructing confidence bounds and
assigning a higher probability to the arm with large variation. At time t we have the variance estimator
V̂t,a = 1

Nt,a

∑t
s=1 (rs,as

− µ̂t,a)
2
1 {as = a}. The upper confidence bound to the suboptimal arm a is defined

as

Ua(t) = µ̂t−1,a +

√
2V̂t−1,ag(Nt−1,a, t)

Nt−1,a
+

3c

Nt−1,a
,

where g(s, t) is an exploration function (Defined in [8]) and c is a constant. Based on the above setting, we
obtain the regret guarantee to the UCB-V as

Theorem 16 ([8], UCB-V). Given K arms in the [0, 1]-Bounded reward setting F[0,1] and a finite time
horizon T . Denote Va as the variance of the reward distribution associated with arm a. The regret of the
UCB-V algorithm is upper bounded by:

E [Regret(T )] ≲
∑

a:∆a>0

(
V 2
a

∆a
+ 1

)
log T

Theorem 16 shows that UCB-V satisfies the sub-UCB criterion but can not guarantee the asymptotic
optimality for the Bernoulli setting. A direct result from Theorem 16 would be the minimax ratio is

√
ln(T ).

Theorem 17 ([37], UCB-V). Given K arms in the [0, 1]-Bounded reward setting F[0,1] and a finite time
horizon T , the expected regret of the UCB-V algorithm is upper bounded as

E [Regret(T )] ≲
√

KT ln(T )

3.3.6 Pros and Cons

The strength of the UCB type of algorithm consists of several aspects: The regret bound is easy to analyze
theoretically. We can follow a certain streamline to decompose the event to conduct the regret analysis[30,
Ch.7, 8, 9]. UCB is quite robust in various settings since the theoretical guarantee has been given to control
each corner case clearly in the regret analysis. The UCB algorithms do not need to perform exploration and
exploitation separately, as with the ETC method, because UCB inherently integrates these aspects into its
framework.

Also, the UCB has several weaknesses: The construction of UCB in many algorithms depends on the time
horizon T . Therefore the performance of UCB is often closely tied to the time horizon of the problem, and
it requires knowledge or estimation of this horizon for optimal tuning. Other algorithms, such as Thompson
Sampling, on the other hand, do not require knowledge of the time horizon and can adapt more fluidly. Also,
most UCB-type algorithms are deterministic, and we can not obtain a reasonable close-form arm sampling
probability distribution.
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3.4 Boltzmann Exploration

Boltzmann exploration (BE)[39, 25] is a standard strategy in Reinforcement Learning, especially in sequential
decision-making under uncertainty. From Algorithm 4, we can see the details of a generic BE algorithm,
fa(·), is an evaluation function to approximate the performance of arm k. It assigns exponential weight
to the sampling probability of each arm, and each round samples an arm from the sampling probability
distribution P. Then, the sampling probability will be updated when receiving the reward.

Algorithm 4 Generic Boltzmann Exploration

1: Input: arm set [K] and P0

2: for t = 1, 2, · · · , T do
3: Pull the arm

∀1 ≤ a ≤ K, pt,a ∝ exp (fa(Ht−1))

4: Observe reward rt,at ∼ νat .
5: Update the history record Ht

6: Update the evaluation function fa(Ht)
7: Update sampling probability,

∀1 ≤ a ≤ K, pt,a ∝ exp (fa(Ht))

8: end for

3.4.1 BE with exponential learning rate

The basic version of BE chooses the evaluation function fa(H+
t ) as ηtµ̂t−1,a (BE-exp-lr, exponential learning

rate). ηt is the learning rate parameter changed with time step t. To minimize the regret, BE needs a
carefully tuned series of learning rate parameters, ηt > 0. The literature has frequently highlighted the
challenges in determining the correct schedule for ηt [31, 41]. One regret bound given by [15] is Theorem 18

Theorem 18 ([15], BE-exp-lr). Given K arms in the [0, 1]-Bounded reward setting F[0,1], a finite time

horizon T and a constant τ := 16eK ln(T )
∆ , with learning rate ηt := 1 {t < τ}+ ln(t∆2)

∆ 1 {t ≥ τ}, the expected
regret of BE-exp-lr is upper bounded as

E [Regret(T )] ≲
K ln(eT )

∆2
, (26)

where ∆ is the minimum non-negative reward gap among all arms in K.

If we compare the regret bound of BE-exp-lr in Eq (26) with previous methods such as UCB1(Eq. (17))
and MOSS(Eq. (21)), BE-exp-lr is much worse when ∆ is small, regardless it has a higher order in the
denominator.

3.4.2 Boltzmann-Gumbel Exploration

[15] demonstrates that typical learning rate schedules might fall short of almost optimal regret guarantees.
Specifically, BE might overly rely on suboptimal arms even after accurately estimating all mean values or
prematurely commit to a less-than-ideal arm and struggle to readjust later. Theorem 18 has a significant
drawback: it depends on prior knowledge of problem parameters ∆, which are usually unknown at the outset
of the learning process.

Given these findings, [15] concludes that the BE-exp-lr strategy does not offer a more effective approach
to regret minimization than the simpler ϵ-greedy exploration method [40, 9]. [15] also offers a solution with
a proposed learning rate schedule and calls the new algorithm Boltzmann–Gumbel exploration (BGE). In

BGE for every step t, the arm has been pulled to maximize µ̂t−1,a +
√

C2

Nt−1,a
Zt−1,i where C is a constant
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and Zt−1,i follows the standard Gumbel distribution. With the new proposed method, [15] bounds the regret
of BGE in Theorem 19. BGE works for σ2-sub-Gaussian but we focus on the [0, 1]-Bounded reward setting
and let σ2 to be 1

4 .

Theorem 19 ([15], BGE). Given K arms in the [0, 1]-Bounded reward setting F[0,1], a finite time horizon
T , the expected regret of BGE is upper bounded as

E [Regret(T )] ≲
∑

a:∆a>0

ln
(
T∆2

a

)
∆a

.

and BGE’s worst-case regret is bounded by Theorem 20

Theorem 20 ([15], BGE). Given K arms in the [0, 1]-Bounded reward setting F[0,1], a finite time horizon
T , the expected regret of BGE is upper bounded as

E [Regret(T )] ≲
√
KT ln(K).

Compared to the UCB1 and kl-UCB, although the logarithmic regret of BGE is worse than UCB1, we
can find the minimax ratio of BGE has been improved from

√
ln(T ) to ln(K) because of an additional ∆2

a.

3.4.3 Minimum Empirical Divergence

Another type of BE method is minimum empirical divergence (MED)[19], followed by Maillard Sampling
[32, 12]. MED is based on the assumption that the reward distribution has a finite support set, which
utilizes all collected data points to construct the support set for each arm. Then, when constructing the arm
sampling distribution, it finds the distribution with higher expectations than the optimal arm and has the
minimum distance to the actual arm empirical distribution measured by the KL divergence. Specifically, at
each time, t MED needs to solve the following question to find the evaluation function fa(Ht−1):

fa(Ht−1) := −Nt−1,aKL
(
Ĝt−1,a, ν̂µ̂t,max

)
(27)

where Ĝt−1,a := argminG∈F,E[G]≥µmaxt KL
(
F̂t−1,a, G

)
, F̂t−1,a is the empirical distribution w.r.t. arm a at

time t−1 and ν̂µ̂t,max
is the best empirical distribution at time t−1. The idea of minimizing KL-diverge is to

assign a more significant weight to the arm with a higher reward than those arms that have worse empirical
performance.

Theorem 21 has guaranteed the regret of MED, and Theorem 22 shows MED satisfies the asymptotic
optimality. We should notice that Theorem 21 and 22, but we only give the Bernoulli reward setting for
simplicity.

Theorem 21 ([19], MED). Given K arms in the [0, 1]-Bounded reward setting FBern, a finite time horizon
T , the expected regret of MED is upper bounded as

E [Regret(T )] ≲
∑

a:∆a>0

∆a(1 + ε) ln(T )

kl (µa, µmax)
+O

(
1

∆3
a

)
+O

(
K2
)
,

where ε is an arbitrary positive constant.

Theorem 22 ([19], MED). Given K arms in the [0, 1]-Bounded reward setting FBern, a finite time horizon
T , MED is asymptotic optimality and satisfies the Eq. (28):

lim
T→∞

E [Regret(T )]

ln(T )
≲

∑
a:∆a>0

∆a

kl (µa, µmax)
. (28)
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3.4.4 Maillard sampling

Another type of BE is the Maillard sampling (MS) [32, 12]. MS denotes the evaluation function fa(H+
t ) :=

exp
(
− 1

2σ2Nt−1,a∆̂
2
t−1,a

)
and adding a burn-in phase where the agent pulls each arm once in the first K

rounds. MS works for σ2-sub-Gaussian but we focus on the [0, 1]-Bounded reward setting and let σ2 to be
1
4 . The regret bound of MS is summarized in Theorem 23

Theorem 23 ([32], MS). Given K arms in the [0, 1]-Bounded reward setting F[0,1], a finite time horizon T ,
the expected regret of MS is upper bounded as

E [Regret(T )] ≲
∑

a:∆a>0

ln
(
T∆2

a/σ
2
)

∆a
.

and its worst-case regret has been bounded by Theorem 24

Theorem 24 ([32], MS). Given K arms in the [0, 1]-Bounded reward setting F[0,1], a finite time horizon T ,
MS satisfy the asymptotic optimality for sub-Gaussian reward setting,

E [Regret(T )] ≲
∑

a:∆a>0

ln(T )

∆a
+

∑
a:∆a>0

∆a,

and the expected regret of MS is upper bounded as

E [Regret(T )] ≲
√
KT ln(T ),

MS does not satisfy the asymptotic optimality for the Bernoulli or the [0, 1]-Bounded reward setting. The
regret is always equal or greater than the theoretical lower bound, and this difference becomes particularly
significant when kl (µa, µmax) becomes much larger than 2∆2

a. (More discussion can be found in Remark 2)
An intriguing possibility lies in achieving an upper bound on regret that aligns perfectly with the lower
bound, with the potential inclusion of the KL divergence as a crucial element in the algorithm.

3.4.5 Pros and Cons

By considering the exponential of action values, BE naturally incorporates the uncertainty in the value
estimates, tending to explore more when uncertainty is high. Also, the arm sampling probability distribution
is closed-form, which benefits the offline evaluation.

There are several shortcomings of BE. The efficiency of BE is highly sensitive to the choice of the
evaluation function fa(·). Choosing an appropriate evaluation function can be non-trivial and might require
tuning or an adaptive strategy. In the BE with learning rate, the efficiency of the algorithm is highly
sensitive to the choice of the learning rate. Choosing an appropriate learning rate can be non-trivial and
might require tuning or an adaptive strategy. Computing the softmax probabilities can be computationally
intensive, especially when there are many actions to choose from, as it requires normalization over all actions.

3.5 Algorithm comparison

We present a comparative analysis of various existing algorithms in table 1 to elucidate the motivation
behind developing a novel algorithm. This comparative overview aims to underscore the shortcomings and
limitations of the current bandit algorithms, thereby underscoring the necessity and rationale for creating a
new algorithm.
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Algorithm& Asymptotic Optimality Finite-Time Regret Closed-form Reference
Analysis For Bernoulli Distribution Minimax Ratio Sub-UCB Probability

TS yes
√
lnK yes no [4][5][27]

ExpTS yes
√
lnK yes no [24]

ExpTS+ yes 1 no no [24]

UCB1 no
√
lnT yes N/A [9]

MOSS no 1 no N/A [7]

kl-UCB yes
√
lnT yes N/A [14]

kl-UCB++ yes 1 −⋆⋆ N/A [34]

UCB-V no
√
lnT yes N/A [8]

BE-exp-lr no − no yes [15]
BGE no lnK yes yes [15]
MED yes − − no⋆ [19]
DMED yes − − N/A [20]
IMED yes − − N/A [22]

MS no
√
lnT yes yes [12]

KL-MS yes
√
µmax(1− µmax) lnK yes yes this paper

Table 1: Comparison of regret bounds for [0, 1]-Bounded reward distributions. ‘−’ indicates that the cor-
responding analysis is not reported. ‘N/A’ indicates that the algorithm has a closed-form arm sampling
probability distribution but is deterministic. ‘⋆’ indicates that its computational complexity for calculating
the action probability is ln(1/precision). ‘⋆⋆’indicates that we conjecture that the algorithm is not sub-UCB.
The asymptotic optimality means whether the algorithm satisfies such criterion under the FBern reward set-
ting.

Based on the analysis presented in Table 1, it becomes evident that none of the algorithms under con-
sideration simultaneously achieve asymptotic optimality, a minimax ratio of 1, and the sub-UCB property
within the family of Bernoulli reward distributions, FBern. Among the current set of algorithms, ExpTS
and ExpTS+ emerge as the major competitors. While ExpTS+ achieves a minimax ratio of 1 by adopting
a more aggressive arm-selection strategy than ExpTS, it does so at the expense of the sub-UCB property.
Furthermore, as both ExpTS and ExpTS+ are on the Thompson Sampling distribution framework, they con-
front challenges in deriving a closed-form arm sampling probability distribution, which may sometimes be
unattainable. Consequently, our expectation of the KL-MS algorithm is threefold: firstly, to simultaneously
accomplish asymptotic optimality and the sub-UCB property, and secondly, to attain a minimax ratio that
is at least on par with ExpTS. Thirdly, to obtain the closed-form arm sampling probability distribution.

4 Kullback-Leibler Maillard Sampling

In this section, we will present the main findings of our study on Kullback-Leibler Maillard Sampling,
abbreviated as KL-MS. KL-MS is a Bernoulli variant of the MS algorithm tailored to the [0, 1]-Bounded
reward setting, and we will conduct a comprehensive analysis using the measurement mentioned the section 2.

In MS, the evaluation function fa(Ht) = −Nt−1,a
∆̂t−1,a

2σ2 which we interpret as the Gaussian KL divergence
between two Gaussian distributions where their means are µ̂t−1,a and µ̂t−1,max, respectively, and adjusted by

the counting Nt−1,a. In KL-MS(alg. 5), we replace the Gaussian KL divergence
∆̂t−1,a

2σ2 by the Bernoulli KL
divergence, kl (µ̂t−1,a, µ̂t−1,max). For the remainder, we have denoted µ̇ := µ(1−µ), which is the variance of a
Bernoulli distribution with mean µ. By making such adaption, we establish that KL-MS attains a finite-time
regret bound (referred to as Theorem 25), which we can simultaneously transform into the following:

• (Asymptotically optimality in the Bernoulli setting) An upper bound on asymptotic regret (Theo-
rem 27), which attains optimality in an asymptotic sense when applied to Bernoulli bandit scenarios.
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• (sub-UCB) Through Theorem 26 we have proved KL-MS satisfies the Sub-UCB regret criterion. Many
existing minimax optimal algorithms do not satisfy it, resulting in a suboptimal regret in a special
bandit instance.

• (Finite-time regret improvement) We obtain an adaptive-worst case regret bound and make the min-
imax ratio to be

√
µ̇max ln (K). The regret bound is expressed as O

(√
µ̇maxKT lnK +K ln(T )

)
(re-

ferred to as Theorem 28). This regret bound demonstrates two noteworthy characteristics regarding the
finite-time improvement. Firstly, in worst-case scenarios, it remains within a factor of at most

√
lnK

compared to the minimax optimal regret of Θ(
√
KT ) as previously outlined in studies like [7, 10].

Secondly, the coefficient
√
µ̇max in the bound adapts to the variance of the optimal arm’s reward. This

marks the first instance in the literature where such adaptability is observed in an algorithm with
asymptotically optimal assurances.

If the reader is interested in the proof procedure, please see our paper [37].

Algorithm 5 KL Maillard Sampling (KL-MS)

1: Input: K ≥ 2
2: for t = 1, 2, · · · , T do
3: if t ≤ K then
4: Pull the arm at = t and observe reward rat

∼ νt.
5: else
6: For every a ∈ [K], compute

pt,a =
1

Mt
exp (−Nt−1,a · kl (µ̂t−1,a, µ̂t−1,max)) (29)

where Mt =
∑K

a=1 exp(−Nt−1,akl (µ̂t−1,a, µ̂t−1,max)) is the normalizer.
7: Pull the arm at ∼ Pt and observe reward rt,at

∼ νat
.

8: end if
9: end for

We build the KL-MS motivated by a Bayesian viewpoint for the problem. Although, like MS and
MED, we do not follow the Bayesian law exactly. Consider the 2-arm bandit in the [0, 1] bounded re-
ward setting, where K = 2 and assume that arm 1 is the best. Then, kl (µ̂t,1, µ̂t,max) should be 0 and
exp (−Nt,1kl (µ̂t,1, µ̂t,max)) = 1 after a few rounds of interactions. Therefore, the arm sampling probability
Pt becomes roughly 1 and exp (−Nt,2kl (µ̂t,2, µ̂t,max)). Based on Pt, the expected instantaneous regret at
time t is 0 ∗ 1 + ∆2exp (−Nt,2kl (µ̂t,2, µ̂t,max)) ≃ ∆2exp (−Nt,2kl (µt,2, µmax)). Add the instantaneous regret
from time 1 to time T , we can get

Regret(T ) ≤
T∑

t=1

∆2exp (−Nt,2kl (µt,2, µmax)) ≤
∞∑
t=1

∆2exp (−tkl (µt,2, µmax))

≤∆2 ·
exp (−tkl (µt,2, µmax))

1− exp (−kl (µt,2, µmax))

≤∆2 ·
1

exp (kl (µt,2, µmax))
≤ ∆2

exp (kl (µt,2, µmax))

The last equality indicates KL-MS is asymptotically optimal in the 2-arm Bernoulli reward setting.

The KL Maillard Sampling Algorithm.(Algorithm 5)

• Initialization Step: At the outset, the algorithm ensures that each arm is pulled once (steps 3 to 4).
This step guarantees that starting from time step K + 1, we have well-defined estimates for the arm
sampling distribution.
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• Empirical Suboptimality Measurement: Starting from time step t = K + 1, the algorithm computes
the empirical mean, denoted as µ̂t−1,a, for each arm a. Then, for each arm a, the algorithm calculates
the binary KL divergence between µ̂t−1,a and µ̂t−1,max, denoted as kl (µ̂t−1,a, µ̂t−1,max). This value
quantifies the empirical suboptimality of each arm.

• Sampling Probability Computation: The sampling probability of arm a, pt,a, is determined based on
the exponential of the negative product of Nt−1,a and kl (µ̂t−1,a, µ̂t−1,max) (as described in Eq.(29) in
step6). This arm sampling strategy effectively balances exploration and exploitation, favoring arms
that have been pulled fewer times (Nt−1,a is small) or appear to be closer to optimal empirically
(kl (µ̂t−1,a, µ̂t−1,max) is small).

• Arm Selection and Reward Observation: The algorithm then samples an arm, denoted as at, from the
distribution Pt, and observes the corresponding reward, denoted as rt,at .

When the reward distributions νi are Bernoulli, KL-MS and the MED algorithm (as discussed in [19]) are
equivalent. This equivalence arises because, in this scenario, all reward distributions exhibit binary support
with values of 0 and 1.

Nevertheless, it is essential to highlight that KL-MS generally differs from the MED algorithm. The
MED algorithm calculates the empirical distributions denoted as F̂t−1,a which is a discrete probability
distribution supported by a finite set of history, and selects actions based on probabilities defined as pt,a ∝
exp(−Nt−1,aDt−1,a). Here, the term Dt−1,a represents the ‘minimum empirical divergence’ at time step
t− 1 between arm a and the arm with the highest empirical mean reward. This measure is distinct from the
binary KL divergence of the mean rewards used in KL-MS, as explained in more detail in the remark 2.

4.1 Main Regret Theorem

We will show the main theorem serving those three goals to achieve the asymptotic optimality, adaptive
worst-case regret bound, and satisfy the sub-UCB criterion simultaneously.

Theorem 25. For any K-arm bandit problem with [0, 1] bounded reward distribution setting, F[0,1], KL-MS

has regret bounded as follows. For any ∆ > 0 and c ∈ (0, 1
4 ]:

Regret(T ) ≤ T∆+
∑

a:∆a>∆

∆a ln(Tkl (µa + c∆a, µmax − c∆a) ∨ e2)

kl (µa + c∆a, µmax − c∆a)

+O

(( ∑
a:∆a>∆

(
µ̇max +∆a

c2∆a

)
ln

((
µ̇max +∆a

c2∆2
a

∧ c2T∆2
a

µ̇max +∆a

)
∨ e2

)))
(30)

The regret bound presented in Theorem 25 comprises three distinct terms.
The first term, denoted as T∆, regulates the contribution of regret stemming from arms with a proximity

to the optimal arm within a margin of ∆, as bounded by the threshold value ∆. For those arms that do not
fall into the near-optimal category, the second and third terms govern their regret.

The second term exhibits an asymptotic behavior, approximately (1 + o(1))
∑

a:∆a>0
∆a

kl(µa,µmax)
ln(T ),

with an appropriately chosen constant term ‘c’. This term grows logarithmically with the time horizon T .
The third term is simultaneously bounded by two inequalities, as expressed in equations (31) and (32):

• The right-hand side of equation (31) aids in establishing a stringent asymptotic upper bound on regret,
as indicated by Theorem 27.

third term in (30) ≤
∑

a:∆a>0

(
µ̇max +∆a

c2∆a

)
ln

((
µ̇max +∆a

c2∆2
a

)
∨ e2

)
(31)

Based on the inequality (31), we can see that KL-MS achieves the asymptotic optimality in the Bernoulli
reward setting (Theorem 27 and satisfying the sub-UCB criterion (Theorem 26).
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• The right-hand side of equation (32) scales on the order of ln(T∆2
a) and aids in establishing a robust

worst-case regret bound, as demonstrated in Theorem 28.

third term in (30) ≤
∑

a:∆a>0

(
µ̇max +∆a

c2∆a

)
ln

(
c2T∆2

a

µ̇max +∆a
∨ e2

)
(32)

By introducing an analysis method borrowed from Jin et al. [24], we can give another inequality (32),
thus we can improve the minimax ratio to

√
µ̇max ln (K) (Theorem 28).

To the best of our knowledge, existing regret analysis on Bernoulli bandits or bandits with bounded
support have regret bounds of the form achieved by kl-UCB(section 3.3.3), kl-UCB++ (section 3.3.4) and
ExpTS (section 3.2.2)

E [Regret(T )] ≤
∑

a:∆a>0

∆a log (T )

kl (µa, µmax)
+

∑
a:∆a>0

O

(
1

µmax
(log (T ))

4/5
log log (T )∆a

)
(kl-UCB)

E [Regret(T )] ≲
K∑

a=1,∆a>0

∆a log
(

T
K

(
1 +

(
log
(
T
K

))2))
kl (µa +∆a, µmax −∆a)

+
K2

∆2
a

+ 1 (kl-UCB++)

E [Regret(T )] ≲
K∑

a=1,∆a>0

ln
(
T∆2

a

)
∆a

+
√
T (ExpTS)

From the above two regret upper bounds, we find that the dominant term (the logarithmic term w.r.t. T )
in the above regret bound do not have kl (, ) in the logarithm. And its lower-order term does not have a KL
type of bound, resulting in a looseness when kl (µa, µmax) is largely deviated from 2∆2

a. Thus, they cannot
derive the adaptive term µ̇ in the regret. As we will see shortly, our regret theorem yields a superior adaptive
worst-case regret guarantee over previous works due to its tighter bounds.

Based on Theorem 25, we show that in the following corollaries, KL Maillard sampling achieves the sub-
UCB, asymptotic optimality, and adaptive worst-case regret guarantee with a logarithmic factor

√
ln(K).

Corollary 26 (Sub-UCB). KL-MS’s regret bound (30) is O
((∑

a:∆a>0
lnT
∆a

))
and is therefore sub-UCB.

Corollary 27 (Asymptotic Optimality in Bernoulli reward setting FBern). For any K-arm bandit problem
with reward distribution supported on [0, 1], KL-MS satisfies the following asymptotic regret upper bound:

lim sup
T→∞

Regret(T )

ln(T )
=

∑
a∈[K]:∆a>0

∆a

kl (µa, µmax)
(33)

Although Corollay 27 cannot show the asymptotical optimality over the bounded reward setting, since

the KL divergence kl (µa, µmax) is superior to the KF[0,1]

inf (νµa
, νµmax

), where νµa
and νµmax

are two distribution
from F[0,1] with mean µa and µmax respectively.

Corollary 28 (Worst-case regret). For any K-arm bandit problem with reward distribution supported on
[0, 1], KL-MS has regret bounded as: Regret(T ) ≤ O

((√
µ̇maxKT lnK +K lnT

))
.

An immediate consequence of this is that KLMaillard sampling exhibits a regret of the orderO
(√

KT lnK
)
,

which is a factor of O
(√

lnK
)
away from the minimax optimal regret of Θ

(√
KT

)
, as previously estab-

lished [34, 7]. This correspondence also aligns with the worst-case regret bound of O
(√

KT ln(K)
)

by

ExpTS [24].
Another significant characteristic of this regret bound is its adaptivity to µ̇max, which stands for the

variance of the reward associated with the optimal arm in the context of Bernoulli bandit or its upper bound
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in the general bounded reward setting. Specifically, if the parameter µmax is situated close to either 0 or 1,

leading to a very low value of µ̇max, the regret becomes substantially smaller than O
(√

KT lnK
)
.

It is worth noting that UCB-V [8] and kl-UCB/kl-UCB++, while not explicitly mentioned, possess a
worst-case regret bound of O

(√
µ̇maxKT lnT

)
, which is less favorable than our bound due to the difference

in logarithmic factors. Among these, UCB-V does not attain asymptotic optimality in the Bernoulli case.
Additionally, logistic linear bandits [2, 33] can be applied to Bernoulli K-armed bandits and achieve similar
worst-case regret bounds that involve µ̇max, but their lower-order term can be notably worse.

5 Experiments

We will conduct two sets of synthetic experiments in this section. The first experiment compares the regrets
among MS, KL-MS, and Thompson Sampling. The second experiment aims to show the superiority of
KL-MS over the Thompson Sampling method in offline evaluation scenario.

5.1 Regret Comparison

We compare KL-MS and two other algorithms, BernoulliTS (Section 3.2.1) and MS (section 3.4.4).In the
BernoulliTS approach, we choose a beta distribution as the prior (Beta(0.5, 0.5)). The reward environment
is adapted from [26] and comprises two two-armed bandit scenarios. The mean reward environments are
−→µ1 := (0.20, 0.25) and −→µ2 := (0.80, 0.90) and we run the simulation 2000 rounds and compare the empirical
mean in both settings.

From Figure 1 and Figure 2, we observe that KL-MS outperforms MS by a noticeable margin, although
it falls behind BernoulliTS. However, the next section will reveal that BernoulliTS produces somewhat
unreliable logged data for offline evaluation.

Figure 1: −→µ1 := (0.20, 0.25) , T = 104 Figure 2: −→µ2 := (0.80, 0.90) , T = 104

5.2 Offline Evaluation

In this section, we present the results of our simulations focusing on offline evaluation using logged data.
The logged data is generated by two bandit algorithms: KL-MS and BernoulliTS. We aim to estimate the
expected reward of a policy that selects actions uniformly at random from the arm set [K]. Hence the

expected reward is equal to µ̄ = 1
K

∑K
i=1 µi.

The format of the logged data is as follows: H+
T := (at, rt,at

,Pt)
T
t=1. Reminding that at represents the

chosen action, and rt,at
signifies the received reward, and Pt = (pt,a)a∈A denotes the arm sampling probability
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distribution (exact or approximate), all at time step t. We employ the Inverse Probability Weighting (IPW)
estimator [23] to estimate µ, defined as:

µ̂ =
1

T

T∑
t=1

rt,at

Pt(i = at)K
.

We consider two different time horizons for the interaction log, setting T to be 103 or 104. For BernoulliTS,
we employ a Monte Carlo (MC) method to estimate the action probabilities, and we vary the number of
MC samples M from the set 103, 104, 105. Note that MC estimation of action probabilities comes with a
significant computational cost. In our simulations, for T = 103, KL-MS takes 0.43 seconds to generate its
logged data, whereas BernoulliTS with M = 103 requires 15.21 seconds for the same task. Setting M = 104

or M = 105 might be impractical in real-world applications.
Figures 3 to 14 are based on the average result over 2 × 103 independent trials. Thus, we can depict

histograms of the IPW estimates of the average reward derived from logged data generated by KL-MS and
BernoulliTS with MC estimation of action probabilities.

Specifically, we use two 2-armed bandit problems with mean rewards of −→µ1 = (0.20, 0.25) and −→µ2 =
(0.8, 0.9).

Tables 2 to 9 provide details on the Mean Squared Error (MSE) and the bias estimate of each estimator.
We can observe from the figures and tables that:

The logged data generated by KL-MS consistently yield more accurate estimates of µ compared to the data
produced by BernoulliTS with MC estimation of action probabilities. The performance of offline evaluation
using BernoulliTS’s logged data is sensitive to the number of MC samples M . While setting M = 104 or
M = 105 aligns the performance with that of KL-MS, the estimation error for the more practical M = 103

setting is notably higher (Figure 9, 12) As the time step T increases, from Figure 3 and 6 to Figure 9
and 12, the error between the IPW estimator using BernoulliTS’s logged data and the actual performance
becomes larger At the same time, KL-MS maintains a consistent level of error, which is smaller than that of
BernoulliTS.

Therefore, we conclude that if the Monte Carlo method is used to approximate arm sampling distribution
without enough precision during the offline policy evaluation, the IPW estimator can be biased, and this
discrepancy will increase with time. If we want to increase the precision of the Monte Carlo method, we
will suffer a high computation cost. This problem does not exist when using the history record generated by
KL-MS, an algorithm with a closed-form arm sampling distribution.

−→µ1 := (0.20, 0.25) , T = 103

Figure 3: M = 103 Figure 4: M = 104 Figure 5: M = 105
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−→µ2 := (0.80, 0.90) , T = 103

Figure 6: M = 103 Figure 7: M = 104 Figure 8: M = 105

−→µ1 := (0.20, 0.25) , T = 104

Figure 9: M = 103 Figure 10: M = 104 Figure 11: M = 105

−→µ2 := (0.80, 0.90) , T = 104

Figure 12: M = 103
Figure 13: M = 104

Figure 14: M = 105
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Table 2: MSEs for −→µ1 := (0.20, 0.25), T =
103

M
103 104 105

BernoulliTS 0.00014 0.00012 0.00014
KL-MS 0.00001 0.00001 0.00001

Table 3: Bias for −→µ1 := (0.20, 0.25), T =
103

M
103 104 105

BernoulliTS -0.00059 0.00106 -0.00068
KL-MS -0.00096 0.00118 0.00011

Table 4: MSEs for −→µ2 := (0.80, 0.90), T =
103

M
103 104 105

BernoulliTS 0.01464 0.01143 0.01228
KL-MS 0.00733 0.00782 0.00749

Table 5: Bias for −→µ2 := (0.80, 0.90), T =
103

M
103 104 105

BernoulliTS 0.02911 0.01741 0.01636
KL-MS 0.01304 0.01412 0.01355

Table 6: MSEs for −→µ1 := (0.20, 0.25), T =
104

M
103 104 105

BernoulliTS 0.00017 0.00010 0.00009
KL-MS 0.00007 0.00006 0.00011

Table 7: Bias for −→µ1 := (0.20, 0.25), T =
104

M
103 104 105

BernoulliTS 0.00637 0.00142 -0.00240
KL-MS 0.00052 0.00066 0.00220

Table 8: MSEs for −→µ2 := (0.80, 0.90), T =
104

M
103 104 105

BernoulliTS 0.06842 0.01276 0.01220
KL-MS 0.00898 0.00804 0.00929

Table 9: Bias for −→µ2 := (0.80, 0.90), T =
104

M
103 104 105

BernoulliTS 0.17947 0.03401 0.04313
KL-MS 0.02046 0.01731 0.01123
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6 Conclusion and Future Work

We have conducted a literature review over several existing families of bandit algorithms, including explic-
itly exploration and exploitation algorithms, the Upper Confidence Bound family, the Thompson Sampling
family, and the Boltzmann Exploration family, and proposed KL-MS, a KL version of Maillard sampling
for stochastic multi-armed bandits in the [0, 1]-bounded reward setting, with asymptotic optimality for the
Bernoulli reward setting, an adaptive minimax ratio

√
µ̇max, the sub-UCB criterion, and a closed-form arm

sampling probability, which is highly amenable to off-policy evaluation. One immediate advantage of KL-MS
is that it only requires constant time complexity concerning the target numerical precision in computing the
arm probability.

We have many possible revenues to extend KL-MS:

A more general reward distribution setting Since many Thompson Sampling algorithms work for a
general setting of the reward distribution, such as ExpTS and kl-UCB work for the one-parameter exponential
family and the family of MED work over semi-bounded reward distribution, we would like to extend the
KL-MS to a more general reward setting and compare it with existing methods. For instance, generalizing
the KL-MS algorithm from a bounded reward setting to the one-parameter exponential distribution family
would be promising. Such a generalization should preserve key attributes, such as asymptotic optimality and
the sub-UCB criterion, and minimax ratio comparable to or surpassing that of the UCB standards

√
ln(K).

Our speculation is to replace the current arm sampling probability distribution Pt by the following setting,

pt,a ∝ exp (−Nt−1,a · KL (ν̂a, ν̂max)) , (34)

Recall that Nt−1,a is the number of arm a has been pulled up to time t − 1(inclusive), KL (, ) is the KL
divergence in a given OPED family FOPED, ν̂a is the distribution in FOPED with empirical mean µ̂a and
ν̂max is the distribution in FOPED with the best empirical mean µ̂max. As for the minimax ratio, we make a
conjecture that its minimax ratio is

√
Vµmax

ln (K), where Vµmax
is the variance from the optimal arm.

Finite time analysis of MED/IMED/DMED In the context of MAB algorithms, finite-time analysis
for algorithms like MED, IMED, and DMED involves a detailed investigation of their performance within
finite-time horizons. This analysis often includes the pursuit of exact minimax ratios and the examination
of the sub-UCB criterion. Here’s a deeper exploration of these aspects:

• Upon closely examining Lemma 9 in [19], specifically equation (20), we observe a significant bound
applied to each suboptimal arm a. The authors have limited the expected number of times a is chosen,
denoted as E[NT,a], by a term not smaller than

∑T
t=1 K(t + 1)|supp(ν1)| exp (−tC(µ1, µ1 − ε)), where

C(µ, µ′) := (µ−µ′)2

2µ′(1+µ) and ε ≤ ∆a. This bound translates to Ω
(

1

∆
2|supp(ν1)|
a

)
when µ1 remains bounded

away from both 0 and 1. Since |supp(ν1)| ≥ 2 , the lower order term becomes Ω
(

1
∆3

a

)
, resulting in a

higher order worst-case regret bound.

• (Exact Minimax Ratio) The exact minimax ratio of MED, IMED, and DMED aims to quantify their
performance relative to the minimax optimal strategy within finite time horizons. Since the regret
bound is hidden behind O(·) in their original regret analysis, we can revisit their analysis and try to
give a bound with the exact expression as we did in the KL-MS.

• (Examination of the sub-UCB criterion) The sub-UCB criterion is one of the key elements of finite-
time analysis. It shows that the target MAB algorithm exhibits performance comparable to the UCB
algorithm, indicating that their regret bound always has the same order as the UCB if the criterion
has been satisfied by such an algorithm. This analysis also does not appear in the original paper. Since
we regard KL-MS as a specialized case of MED in the Bernoulli reward setting, we believe MED can
also achieve sub-UCB in a broader setting, such as the OPED reward setting.
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Moving from stateless to a stateful environment. Building upon the extension of Thompson Sam-
pling from MAB problems to the more complex Markov Decision Process (MDP) setting, as explored in
[18, 36, 42], we aim to extend Maillard Sampling similarly. Therefore, Maillard Sampling could offer a novel
approach to MDPs by providing a closed-form transition probability distribution.
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A Table of Notations

A : The set of all arms.

T : Total time length.

V : Collection of reward distribution associated with an instance. In K-arm bandit, V = (νa)
K
a=1 ,

K : The number of arms.

B := (T,A,V) ,Multi-arm bandit instance.

at : Arm pulled at time t.

µa : Mean of reward distribution associated with arm a.

µmax : The best-expected reward returned from the optimal arm

∆a := µmax − µaThe expected reward gap from the optimal arm to the arm a

rt,at : Reward returned at time t by pulling arm at.

π : a MAB algorithm

RegretπB : The expected regret induced by the MAB algorithm π on the instance B.
Regret(T ) : The expected regret w.r.t. time length T
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Pt : Probability distribution of arm pulling at the time step t. In K-arm bandit, Pt = (pt,a)
K
a=1 ,

pt,a : The probability of pulling arm a at the time step t.

P̂t : The empirical estimation to the probability distribution of arm pulling at the time step t.

In K-arm bandit, P̂t =
(
P̂t,a

)K
a=1

.

p̂t,a : The empirical estimation to the probability of pulling arm a at the time step t.

Pt,a : General posterior distribution for arm a at the time step t in TS.

HT := (at, rt,at
)
T
t=1 ,History log among T time steps.

H+
T := (at, rt,a ,Pt)

T
t=1 ,Enhanced history log.

E := {B : B = (T,A,V) ,∀a ∈ A, νa ∈ F}Environment family

KL (ν1, ν2) : KL divergence between two distributions, ν1 and ν2

kl (µ1, µ2) : KL divergence between two Bernoulli distributions specified by mean µ1 and µ2

KF
inf := KF

inf(Fi, µmax) := inf
G∈F

{KL (Fi, G) : EG (X) > µmax}

F : Reward distribution family.

F[0,1] :=

{
ν :

∫ 1

0

Pν dx = 1

}
,Bounded reward distribution family.

FBern := {ν : supp(ν) = {0, 1} ,P(x = 1) = µ, µ ∈ [0, 1]} ,Bernoulli reward distribution family.

FOPED,η,b := {νθ : Pθ(x) = exp (xθ − b(θ) + c(x))} ,One-parameter exponential reward distribution family.

Fσ2−sub−G := Fsub−G := {νσ : ν is σ-subgaussian} , σ2-Sub-Gaussian reward distribution family.

µ̂t,a :=

∑t
i=1 1 {ai = a} rt,ai∑t

i=1 1 {ai = a}
,Empirical mean estimation w.r.t. arm a until time t(inclusive).

Nt,a :=

t∑
i=1

1 {ai = a} ,Number of arm pulls w.r.t. arm a until time t(inclusive).

µ̂t,max := max
a∈A

, The best empirical mean reward up to time step t

∆̂t,a := µ̂t,max − µ̂t,a, The gap between the empirical best mean reward and the empirical mean reward of arm a

µ̇ := µ(1− µ)

Va : Variance of νa

V̂t,a : The empirical estimation to Va at time step t

Ua(t) : The upper confidence bound to arm a at time t
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