Hao Oin

Ph.D. Candidate at the University of Arizona

LDUCATION	
University of Arizona, Tucson, AZ	United States
Ph.D. Candidate in Statistic	Aug. 2020 - Present
Advised by Dr. Chicheng Zhang	
University of Arizona, Tucson, AZ	United States
M.S. in Computer Science	Aug. 2023 - May. 2024
University of Wisconsin-Madison, Madison, WI	United States
M.S. in Data Science	Sept. 2018 - May 2020
Shandong University, Jinan, Shandong Province	P. R. China
B.S. in Mathematics	Sept. 2014 - Jun. 2018
Research Experience	

Research Assistant, University of Arizona

Under the supervision of Dr. Chicheng Zhang

• Inverse Reinforcement Learning (on-going) Investigating the limitations of existing Inverse Reinforcement Learning (IRL) algorithms, particularly their suboptimal performance in dynamic and noisy environments. Addressing challenges in solving alignment and superalignment problems, which require accurate estimations of real-world models that are often inaccessible. Focused on developing enhanced IRL algorithms that deliver improved theoretical guarantees and superior empirical performance compared to state-of-the-art approaches.

- Reinforcement Learning (on-going) Developing novel algorithms to solve reinforcement learning problems with optimal efficiency. The approach leverages the posterior sampling principle, an underexplored area in the literature. This new algorithm is designed to outperform existing methods based on optimism in the face of the uncertainty principle, offering improved performance and robustness.
- Multi-armed Bandits Developed the Kullback-Leibler Maillard Sampling (KL-MS) algorithm for the k-armed bandit problem, demonstrating its superiority over the Maillard Sampling (MS) algorithm and Thompson Sampling. A key feature of KL-MS is its ability to provide a known sampling probability, a unique attribute among stochastic bandit algorithms. This feature proves especially valuable for unbiased estimation in offline policy evaluation by granting access to the underlying sampling probabilities.

TEACHING EXPERIENCE

Graduate Assistant, University of Arizona	Tucson, AZ
Teaching Assistant	
 CSc 352 Operating Systems 	Spring 2024
 Math 112 College Algebra (Lecturer) 	Fall 2023, 2022, 2021
 Math 263 Intro to Statistics and BioStatistics 	Spring 2022
WORKING EXPERIENCE	

Amazon Applied Scientist Intern

Developing a solution for email preference optimization at Amazon Business using contextual bandits. The goal is to enhance customer click-through rates by identifying and delivering emails that are most likely to appeal to individual customers, thereby improving engagement and personalization.

Statistical Consultant, University of Arizona

Providing statistical advice and support to peers, researchers, and faculty members. Analyzing data and helping with the interpretation of results. Enhancing personal skills in statistics, problem-solving, communication, and collaboration

PUBLICATIONS

• Hao Qin, Kwang-Sung Jun and Chicheng Zhang. Kullback-Leibler Maillard Sampling for Multi-armed Bandits with Bounded Rewards, NeurIPS, December 2023. Available: link.

• Hao Qin, Kwang-Sung Jun and Chicheng Zhang. Maillard Sampling for Multi-armed Bandits with one-parameter exponential family distributions

PRESENTATIONS AND POSTERS

- Hao Qin, Kwang-Sung Jun and Chicheng Zhang. Kullback-Leibler Maillard Sampling for Multi-armed Bandits with Bounded Rewards, ITA, March 2024.
- Hao Qin, Chicheng Zhang. Multi-armed Bandits with Bounded Rewards: a Short Survey and Kullback-Leibler Maillard Sampling, November 2023. link

Tucson, AZ Aug. 2020 - Present

2024 summer, Seattle, WA

2023, Tucson, AZ